1.

In this question, the unit vectors $\binom{1}{0}$ and $\binom{0}{1}$ are in the directions east and north.
Distance is measured in metres and time, t, in seconds.
A radio-controlled toy car moves on a flat horizontal surface. A child is standing at the origin and controlling the car.

When $t=0$, the displacement of the car from the origin is $\binom{0}{-2} \mathrm{~m}$, and the car has velocity $\binom{2}{0} \mathrm{~m} \mathrm{~s}^{-1}$.

The acceleration of the car is constant and is $\binom{-1}{1} \mathrm{~m} \mathrm{~s}^{-2}$.
i. Find the velocity of the car at time t and its speed when $t=8$.
ii. Find the distance of the car from the child when $t=8$.
2. The directions of the unit vectors \mathbf{i} and \mathbf{j} are east and north.

The velocity of a particle, $\mathrm{v} \mathrm{ms}^{-1}$, at time $t \mathrm{~s}$ is given by

$$
\mathrm{v}=(16-\ell) \mathrm{i}+(31-8 \mathrm{t} \mathrm{j} .
$$

Find the time at which the particle is travelling on a bearing of 045° and the speed of the particle at this time.
3. The map of a large area of open land is marked in 1 km squares and a point near the middle of the area is defined to be the origin. The vectors $\binom{1}{0}$ and $\binom{0}{1}$ are in the directions east and north.

At time t hours the position vectors of two hikers, Ashok and Kumar, are given by:

$$
\begin{array}{ll}
\text { Ashok } & \mathbf{r}_{\mathrm{A}}=\binom{-2}{0}+\binom{8}{1} t \\
\text { Kumar } & \mathbf{r}_{\mathrm{K}}=\binom{7 t}{10-4 t}
\end{array}
$$

i. Prove that the two hikers meet and give the coordinates of the point where this happens.
ii. Compare the speeds of the two hikers.
4. A particle is initially at the origin, moving with velocity \mathbf{u}. Its acceleration \mathbf{a} is constant. At time t its displacement from the origin is $\mathrm{r}=\binom{x}{y}$, where $\binom{x}{y}=\binom{2}{6} t-\binom{0}{4} t^{2}$.
i. Write down \mathbf{u} and \mathbf{a} as column vectors.
ii. Find the speed of the particle when $t=2$.
iii. Show that the equation of the path of the particle is $y=3 x-x^{2}$.
5. A model boat has velocity $\mathrm{v}=((2 t-2) \mathbf{i}+(2 t+2) \mathrm{j}) \mathrm{m} \mathrm{s}^{-1}$ for $t \geq 0$, where t is the time in seconds.
i is the unit vector east and j is the unit vector north.
When $t=3$, the position vector of the boat is $(3 i+14 j) m$.
(a) Show that the boat is never instantaneously at rest.
(b) Determine any times at which the boat is moving directly northwards.
(c) Determine any times at which the boat is north-east of the origin.
6. A toy car moves on a horizontal surface. Its velocity in $\mathrm{m} \mathrm{s}^{-1}$ is given by

$$
v=1.5 \mathbf{i}+0.5 t \mathbf{j}
$$

where \mathbf{i} and \mathbf{j} are unit vectors east (x-direction) and north (y-direction) respectively and t is the time in seconds.

Initially the car is at the point 2 m north of the origin.
(a) Calculate the speed of the car after 3 seconds.
(b) Find the position vector of the car after t seconds.
(c) Show that the cartesian equation of the path of the car is $y=\frac{x^{2}}{9}+2$.
7. In this question, $\binom{1}{0}$ and $\binom{0}{1}$ are unit vectors in the x - and y-directions.

A bird is flying in the vertical plane defined by these directions.
The origin is a point on the ground.
The position vector, r m , of the bird at time t seconds, where $t \geq 0$, is given by

$$
\mathbf{r}=\binom{0}{8}+\binom{2}{-4} t+\binom{0}{1} t^{2}
$$

(i) Find the velocity of the bird when $t=2.5$.
(ii) Find the time at which the speed of the bird is $10 \mathrm{~m} \mathrm{~s}^{-1}$.
(iii) Find the times at which the bird is flying at an angle of 45° to the horizontal.
8. The position vector r metres of a particle at time t seconds is given by

$$
\mathbf{r}=(1+12 t-2 f) \mathbf{i}+(f-6 t) \mathbf{j} .
$$

(a) Find an expression for the velocity of the particle at time t.
(b) Determine whether the particle is ever stationary.
9. In this question the unit vectors \mathbf{i} and j are directed east and north respectively.

A model boat sails from a point A with an initial velocity of $-2 \mathrm{j} \mathrm{m} \mathrm{s}^{-1}$. It accelerates uniformly to a velocity of
$(4 \mathbf{i}+6 \mathbf{j}) \mathrm{ms}^{-1}$ in 8 s .
(a) Calculate the acceleration of the boat.
(b) Find the time at which the boat is sailing due east.

4 s after leaving A, the boat is at point B with position vector $(5 i-2 j) m$.
(c) Find the position vector of A.
10. In this question the positive x and y directions are east and north respectively.

A model boat sails from the origin with initial velocity $3 \mathrm{~ms}^{-1}$ due west and moves with acceleration
$\binom{-0.1}{0.2} \mathrm{~ms}^{-2}$ for 25 s.
(a) $\begin{aligned} & \text { Show that the velocity of the boat } 25 \mathrm{~s} \text { is }\end{aligned}\binom{-5.5}{5} \mathrm{~m} \mathrm{~s}^{-1}$.
(b) Find the cartesian equation of the path of the boat.

Mark scheme

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \begin{tabular}{l}
Motion in Two Dimension\$ \\
were lost were usually as a result of candidates not fully answering the questions, omitting the velocity at time t and the speed in part (i) and the distance travelled in part (ii).
\end{tabular} \\
\hline \& Total \& 8 \& \\
\hline \multirow[t]{15}{*}{2} \& \multirow[t]{15}{*}{} \& M1 \& The candidate recognises that the \(\mathbf{i}\) and \(\mathbf{j}\) components must be equal. \\
\hline \& \& \multirow[t]{4}{*}{A1

A1} \& An equation is formed. \\
\hline \& \& \& \\
\hline \& \& \& \\
\hline \& \& \& May be implied by later working. \\
\hline \& \& B1 \& \\
\hline \& \& B1 \& \\
\hline \& \& B1 \& This mark is dependent on obtaining A1 for the result $t=3$ or 5 . It is awarded if the speed for the case when $t=$ 5 is not included (since $t=5 \Rightarrow \mathrm{v}=-9 \mathbf{i}-9 \mathbf{j}$ and the bearing is 225°). \\
\hline \& \& \& Note: Candidates who obtain r and equate the east and north components should be awarded SC1 for the whole question. \\
\hline \& \& \& \\
\hline \& \& M1 \& The candidate recognises that the \mathbf{i} and \mathbf{j} components must be equal. \\
\hline \& \& B1 \& This can be demonstrated during the question either by a suitable convincing diagram including 45°, or by a suitable convincing argument. \\
\hline \& \& A1 \& Trial and error is used \\
\hline \& \& A1 \& $t=3$ is found by trial and error \\
\hline \& \& B1 \& \\
\hline
\end{tabular}

	ii	Ashok's speed is $\sqrt{8^{2}+1^{2}}=\sqrt{65}$ Kumar's speed is $\sqrt{7^{2}+(-4)^{2}}=\sqrt{65} \mathrm{~km} \mathrm{~h}^{-1}$ They both walk at the same speed	B1 B1 	CAO from correct speeds SC1 for finding both velocities correctly but neither speed Examiner's Comments Candidates were asked to compare the speeds of the two hikers and most got this right. A few compared their velocities. Others did not know how to obtain the velocities from the given expressions in terms of t for the position vectors.
		Total	7	
4	i	$u=\binom{2}{6}$	B1	
		$a=\binom{0}{-8}$	B1	Examiner's Comments In this question the position of a particle at time t was given as a column vector. In part (i)candidates were asked to write down \mathbf{u} and \mathbf{a} as column vectors. Most were successful in this but a common mistake was to give \mathbf{v} instead of \mathbf{u}. $\binom{2}{6},\binom{0}{-8}$
	i	$v=u+a t$		
	ii	$t=2 \Rightarrow \mathbf{v}=\binom{2}{6}+\binom{0}{-8} \times 2$	M1	Or equivalent. FT for their \mathbf{u} and a

5	a	Require both components zero at the same time \mathbf{i} component zero only when $t=1$ and \mathbf{j} component only when $t=-1$ so there are no such times	M1(AO3.1b) A1(AO2.4) [2]	May be implied but must be clear Or say j component ≥ 2 since t ≥ 0	Motion in Two Dimensions
	b	This requires use of the velocity vector Travelling due north means that the \mathbf{i} component is zero and the \mathbf{j} component +ve So we need $2 t-2=0$ for \mathbf{i} component, giving $t=1$. This gives j component $4>0$ so yes at $t=1$.	M1(AO3.3) A1(AO2.4) [2]	Recognise velocity vector required Must test \mathbf{j} component	
	c	This requires use of the position vector either $\begin{aligned} & \mathrm{r}=\int \mathrm{vd} t \text { so } \mathrm{r}=\int((2 t-2) \mathbf{i}+(2 t+2) \mathrm{j}) \mathrm{d} t= \\ & (t-2 t+C) \mathbf{i}+(t+2 t+D) \mathbf{j} \\ & \mathrm{r}=3 \mathbf{i}+14 \mathbf{j} \text { when } t=3 \text { so } C=0 \text { and } D=-1 \\ & \text { so } \mathbf{r}=\left(t^{2}-2 t\right) \mathbf{i}+\left(t^{2}+2 t-1\right) \mathbf{j} \end{aligned}$ Or $\begin{aligned} & a=2 i+2 j \text { when } t=3 v=4 i+8 j, \\ & \mathbf{r}=(4 \mathbf{i}+8 \mathbf{j})(t-3)+\frac{1}{2}(2 \mathbf{i}+2 \mathbf{j})(t-3)^{2}+3 \mathbf{i}+14 \mathbf{j} \end{aligned}$ and so $\mathbf{r}=\left(f^{2}-2 t\right) \mathbf{i}+\left(f^{2}+2 t-1\right) \mathbf{j}$ the boat is NE of O when the \mathbf{i} and \mathbf{j} components are equal and +ve	M1(AO3.1b) M1 (AO1.1) A1(AO1.1) M1 (AO1.1) A1(AO1.1) M1(AO3.2b) A1(AO2.1) [5]	Recognise position vector required May use + C instead Must find a but may omit $3 i+$ 14j	

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \[
y=\frac{x^{2}}{9}+2 \quad \mathbf{A G}
\] \& [3] \& \begin{tabular}{|l|l|l|}
\hline Must be fully justified \& \& Motton in Two Dimensions \\
\hline
\end{tabular} \\
\hline \& \& Total \& 8 \& \\
\hline 7 \& i \& Differentiating r
\[
\begin{aligned}
\& \mathbf{v}=\binom{2}{-4}+\binom{0}{2} t \\
\& \mathbf{v}=\binom{2}{1}
\end{aligned}
\] \& M1
A1

B1

[3] \& | Attempt at differentiation must be seen |
| :--- |
| Apply ISW for speed $=\sqrt{5}$ providing $\binom{2}{1}_{\text {is seen. }}$ |
| Examiner's Comments |
| This question was about vectors, using the context of the flight of a bird. The position vector of the bird was given in term of the time. |
| In part (i) candidates were asked about the velocity of the bird and this was well answered using vectors. | \\

\hline \& ii \& $$
\sqrt{2^{2}+(-4+2 t)^{2}}=10
$$

$$
\begin{aligned}
& t-4 t-20=0 \\
& t=\frac{4 \pm \sqrt{4^{2}-4 \times 1 \times-20}}{2}(=6.898 \ldots \text { or }-2.898 \ldots)
\end{aligned}
$$ \& M1

M1 \& | Attempt at formulation of the given information using their vector \mathbf{v} from part (i). Must involve both components. $\text { e.g. }-4+2 t=\sqrt{96}$ |
| :--- |
| Accept drawing triangle of velocities |
| Attempted solution of an equation for t. Dependent on previous M mark |
| Allow FT from their vector expression for v in part (i). Else CAO. Condone not giving the negative value of t as well as the correct value. Dependent on both M marks. | \\

\hline
\end{tabular}

		$t=6.9$ (or -2.9) (to 2 sf)	A1 [3]	Examiner's Comments Motion in Two Dimension\$ In part (ii), the time was to be found at which the bird had a given speed. This involved using a vector expression to form a scalar equation. Many candidates did not know how to go about this. Others obtained the right answer but their explanations were not always the most elegant. However there were very good answers written by some candidates.	
	iii	Either $2=-4+2 t \Rightarrow t=3$ Or $-2=-4+2 t \Rightarrow t=1$	B1 B1 [2]	FT from their vector expression for v in part (i). FT from their vector expression for vin part (i). Examiner's Comments In part (iii), candidates were asked to find the times whe Correct answers to this were somewhat uncommon. the position vector rather than the velocity; most of thos when the bird was flying above the horizon and not whe	the bird was flying at an angle of 45° to the horizontal. common mistake was to equate the components of who did use the velocity considered only the case it was flying below it.
		Total	8		
8	a	$\mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}=(12-2 \times 2 t) \mathbf{i}+(2 t-6) \mathbf{j}$	M1 (AO 1.1a) A1 (AO 2.5) [2]	Attempt to differentiate at least one coefficient Must use vector notation Examiner's Comments Most candidates used vector notation accurately and velocity.	cessfully differentiated to obtain a correct expression for
	b	When $t=3$ both components of velocity are zero,	$\begin{gathered} \text { M1 (AO } \\ 3.1 \mathrm{a}) \end{gathered}$	Equating at least one component of their vector velocity to zero	Do not allow M1 for solving 12 $4 t=2 t-6$ unless at least one zero subsequently established

	so the particle is stationary at $t=3$.		$\begin{gathered} \text { E1 (AO } \\ \text { 2.2a) } \end{gathered}$	Must be argued from two zero components Examiner's Comments This was typically well answered with most candidates at the same time. Misconception It is not sufficient to equ starting point, candidates would need to check that the	Motion In Two Dimension alising the requirement for both components to be zero e the components and solve to find $t=3$. From this mponents were zero to achieve the method mark.
		Total	4		
9	a	$4 \mathbf{i}+6 \mathbf{j}=-2 \mathbf{j}+8 \mathbf{a}$ $\mathbf{a}=0.5 \mathbf{i}+\mathrm{jm} \mathrm{~s}^{-2}$	M1 (AO 1.1a) A1 (AO 2.5) [2]	For use of vector equation $\mathbf{v}=\mathbf{u}$ $+\mathrm{a} t$, or alternatively for finding both acceleration components separately Must be vector form; do not allow final answer as separate components	Do not allow for the magnitude of the acceleration unless final answer is labelled as such
	b	$\mathbf{v}=-2 \mathbf{j}+(0.5 \mathbf{i}+\mathbf{j}) t$ is directed east when $-2+t=0$	$\begin{aligned} & \text { M1 (AO } \\ & 3.1 \mathrm{~b}) \end{aligned}$	For equating j component of velocity to zero, giving equation	

		$t=2$, so boat sails east at time 2 s	$\begin{gathered} \mathrm{Al}_{1} \text { (AO } \\ \text { 3.2a) } \\ {[2]} \end{gathered}$	for t cao	Motion in Two Dimenstom
	c	$\begin{aligned} & \text { Displacement in } 4 \text { s is } \\ & (-2 \mathbf{j}) \times 4+\frac{1}{2}(0.5 \mathbf{i}+\mathbf{j}) \times 4^{2} \\ & =4 \mathbf{i}(+0 \mathbf{j}) \\ & \text { Position at time } t=4 \text { gives } \mathbf{r}_{A}+4 \mathbf{i}=5 \mathbf{i}-2 \mathbf{j} \\ & \mathbf{r}_{A}=\mathbf{i}-2 \mathbf{j} \end{aligned}$	M1 (AO 3.1b) A1 (AO 1.1) M1 (AO 3.1b) A1 (AO 1.1)	$\|l\|$ Or any use of $\mathbf{s}=\mathbf{u} t+\frac{1}{2}$ $\mathbf{a}$$t^{2}$ with $t=4$ and their a even if no clarity about displacement/ position For correct use of position vectors Must be in vector form	Equation may include initial position term r_{A} May be earned earlier, if original equation is $\mathbf{r}=\mathbf{r}_{0}+\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$
		Total	8		
10	a	Initial velocity is $\binom{-3}{0}$$\mathbf{v}=\mathbf{u}+\mathbf{a} t=\binom{-3}{0}+\binom{-0.1}{0.2} 25$	B1 (AO 2.1) M1 (AO 2.1) A1 (AO 2.5) [3]	For correct vector seen FT their initial velocity as long as it is a vector AG; must be in vector form	Allow full credit for an answer where the two components are considered separately only if the final answer is given as a vector

	$=\binom{-5.5}{5}$		Motion in Two Dimension\$	
	$\begin{aligned} & \mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}=\binom{-3}{0} t+\frac{1}{2}\binom{-0.1}{0.2} t^{2} \\ & \binom{x}{y}=\binom{-3 t-0.05 t^{2}}{0.1 t^{2}} \end{aligned}$ Substitute $f=10 y$ into equation for x $x=-3 \sqrt{10 y}-0.5 y$	$\begin{gathered} \text { M1 (AO } \\ \text { 3.1a) } \\ \\ \\ \text { M1 (AO } \\ \text { 3.1a) } \\ \hline \text { A1 (AO } \\ \text { 1.16) } \\ \\ \hline[3] \end{gathered}$	FT their u Attempt to eliminate t, F T their r	Allow full credit for both components considered separately
	Total	6		

